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Chapter 1

Introduction

The lumbar spine is of continued concern for physicians and patients. It is estimated

that up to 85% of all people will report having back pain at some time in their lifetime

[5]. In 1998, it was estimated that patients with back pain spend more than $90 billion

annually (1% of U.S. GDP) in health care costs [58]. In a 2002 survey, 26% of U.S. adults

reported low back pain, and it was estimated that in 2005, about 33.3 million U.S. adults

have spine problems [65]. Despite advancements in medical treatment and spending on this

issue, the annual per capita health expenditure in U.S. adults has increased by 65% from

1997 to 2005 and people with low back pain have been shown to spend 73% more on health

expenses per year [65]. It has generally been considered that the cause of back pain is

primarily biomechanical [1, 68, 111]. For this reason, musculoskeletal models are of great

interest to researchers in biomechanics, as they provide an inexpensive and efficient method

to determine the different parameters of interest such as muscle activation, joint torques and

forces, the contributions of passive and active stiffness elements, optimal posture, and the

like that can be used to differentiate the motion of subjects with and without lower back
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pain. In addition, these models permit the numerical replication and analysis of various

biomechanical experiments for a wide variety of subjects in a relatively simple and user-

friendly manner. This is especially advantageous for physicians and medical practitioners

who have limited time and desire quick results.

The last decade has shown exponential growth in open source software projects [26].

This growth has demonstrated the power of open-source, research based communities, such

as Wikipedia, in combining knowledge towards a centralized goal [50]. The SimTK initiative

and the OpenSim [23] community is a great example of this application in the biomechanics

arena. Users can download the OpenSim software for free and use it to to create their own

models, improve upon existing ones, or, alternatively, simply employ any of the available

models, to analyze biomechanical data. The benefits are numerous and include the ability

to build upon the contribution of others instead of needing to start from scratch, a better

understanding of existing models, the potential for comparing kinematical data from dif-

ferent research groups on a common platform as well as the fostering of an environment

of cooperation in the biomechanics community. Improvements of existing models as well

as newly developed ones can be obtained and analyzed relatively effortlessly. In short, the

development of an open-source musculoskeletal model of the lumbar spine can open the door

for other researchers’ contributions and refinements paving the way for the establishment of

a penultimate model that accurately mimics the human lumbar spine in a relatively small

amount of time.

Several models of the human lumbar spine have been presented in the literature [14,

20, 22, 28, 52, 71, 95, 96]. However, there have been several limitations and drawbacks to

these models. In particular, these models have either been created with local software with
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proprietary software that is not easily attainable, or have not been made available to the

public. In addition, no model has yet to combine the detailed lumbar musculature with the

necessary accurate musculotendon parameters as defined by Zajac [116].

This reports attempts to address this deficit by presenting an open-source, detailed mus-

culoskeletal model of the human lumbar spine. The 8 main muscle groups of the lower back

are incorporated via their associated 238 muscle fascicles [14]. Muscle wrapping surfaces and

via points have been utilized extensively to ensure physiological lines of action. In addition,

new data for the extensive muscle parameters necessary for modeling the 238 actuators (or

muscle fascicles) as a Hill-Type Model [43, 116] is presented in Table A.2.

This report is organized as follows. In Chapter 2, we examine the use of rotation tensors

for describing motions as well as provide a brief summary on the determination of the

instantaneous axes of rotation (IAR) of each joint. We also explain the basic kinematics

working behind the OpenSim musculoskeletal program [23, 24], and its Dynamics Engine.

We also present a literature review of the extensive kinematic studies of the lumbar spine

motion using various techniques: CT, MRI, Dual Video Fluoroscopy, and Kirschner-wires.

Chapter 3 goes into further detail about muscle parameters, and their use for determining

musculotendon force, and moments. In Chapter 4, we examine the literature with respect

to work on the lumbar spine musculature, in particular, focus on the extensive anatomical

work conducted by Bogduk and Macintosh in the 1980s [14, 12]. Lastly, in Chapter 5 we

present our OpenSim musculoskeletal model of the lumbar spine, describe the assumptions

employed, and compare the ensuing results to relevant experimental data.
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Chapter 2

Background from Biomechanics

2.1 Rotations

In order to parametrize motions between bodies, we must introduce what is known as a

tensor. For the sake of simplicity, we will define a tensor A as a linear transformation of the

Euclidean vector space E into itself. A rotation tensor R is a subset of the tensor space L

and is defined as a proper-orthogonal tensor (RRT = I) which transforms vectors from the

fixed frame of reference into the moving frame of reference:

ei = REi = RkiEk. (2.1)

From (2.1), we can write R as

R = RikEi ⊗Ek = Rikei ⊗ ek = ei ⊗ Ei, (2.2)

Note in the above representation that the tensor R has nine components Rik. Euler

represents a rotation tensor by its axis of rotation r and an angle of rotation θ by the
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following:

R(θ, r) = cos(θ)I+ (1− cos(θ))(r⊗ r)− sin(θ)(ǫr)

= cos(θ)(I− r⊗ r)− sin(θ)(ǫr) + r⊗ r. (2.3)

Furthermore, commonly used in the dynamics of aircrafts, automotives, and in biomechan-

ics, Euler presents a means of representing motion by three rotations about three different

axes. This is known as the Euler angle representation. Essentially, this representation is a

combination of three rotation tensors:

R = R(ν1, ν2, ν3) = R(ν3, g3)R(ν2, g2)R(ν1, g1), (2.4)

where {νi} are the Euler angles, {gi} are the set of unit vectors known as the Euler basis

and R(νi, gi) is defined by Eq. 2.3. For the purpose of lumbar motion, we will employ the

3-1-2 set of Euler angles:

















g1

g2

g3

















=

















0 0 1

cos(ψ) sin(ψ) 0

− cos(θ) sin(ψ) cos(θ) cos(ψ) sin(θ)

































E1

E2

E3

















(2.5)

Therefore, the body will undergo a rotation of an angle ψ about E3, θ about E1, and γ

about E2, as shown in Fig. 2.4. This set of Euler angles is asymmetric, and is convenient

because its only singularity occurs if the second angle, θ, is ±π/2. Since lateral bending

(rotation about E1) of each vertebrae is limited to a maximum of about±10 degrees [9], there

should be no worry about reaching this singularity. Using the Euler angle representation,

as in Eq. 2.4, the rotation tensor R takes the matrix representation with the following
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components, Rik:















R11 R12 R13

R21 R22 R23

R31 R32 R33




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



=















cos(γ) 0 − sin(γ)

0 1 0

sin(γ) 0 cos(γ)





























1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)





























cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1















.(2.6)

2.2 Rigid Body Motion

The general motion of a rigid body is characterized with six general coordinate: three

rotations, and three tranlsations. This motion is depicted in Fig. 2.1. The transformation

brings forth the following result:

x(t) = Q(t)X + d(t). (2.7)

Here, x(t) is the position of an arbitrary material point on the rigid body, X is the point’s

initial position, Q(t) is the rotation tensor, and d(t) is the displacement of the rigid body.

The fixed body has its coordinate system in the fixed Cartesian basis {E1,E2,E3}, while

the moving body, B2 lies in the corotational basis {e1, e2, e3}, which transforms according

to Eq. 2.7.
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Q(t)

e1
e1

e2

e2 e3
e3

X

x(t)

E2

E1

E3

B2

B1

B2

O

Figure 2.1: Schematic of two rigid bodies: B1, fixed, and B2, moving relative to B1.

2.3 Determination of the Helical Axis

The helical axis is a convenient way to represent joint motions, yet it is sometimes

difficult to visualize. Fig. 2.2 is a schematic of a rigid body motion through the helical axis.

The SimBody toolkit does not employ this technique to represent motion, as Euler Angles

yield more stable transformations, less subject to singularities. However, it is important

to understand the helical axis, as it has a strong use in biomechanics for it simplicity of

representation.

For a rotation tensor Q(t), its instantaneous axis of rotation, s(t), is invariant when Q(t)

is operated upon it: Q(t)s(t) = s(t). Therefore, s(t) is the real eigenvector of Q(t) and the
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Q(t)

ρ(t)

σs(t)

s(t)

φ(t)

E2

E1

E3

B1(t0)

B1(t)

O

Figure 2.2: Schematic of the motion of a rigid body, B1, depicting the helical axis s(t), the

angle of rotation φ(t), and the translation σ(t) along the axis.

solution to

(Q(t)− I) s(t) = 0. (2.8)

The angle of rotation, φ(t), can be calculated as follows:

cos(φ(t)) =
1

2
(tr(Q(t))− 1) (2.9)

When the angle of rotation is known, the helical axis can be computed:

s(t) =
1

2 sinφ(t)

















Q32 −Q23

Q13 −Q31

Q21 −Q12

















(2.10)
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Furthermore, the amount of translation, σ(t), along the helical axis s(t), is:

σ(t) = s(t) · d(t) (2.11)

The previous solutions are straightforward. However, the location of the helical axis,

ρ(t), is not well defined. In general, the solution to ρ(t) is as follows:

(Q(t)− I)ρ(t) = σ(t)s(t)d(t) (2.12)

However, (Q(t) − I) is noninvertible, and hence there is no unique solution to ρ(t) in Eq.

2.12. Therefore, ρ(t) can be solved by setting a component arbitrarily. Of common practice

is to solve for the intercept of the helical axis with the E1 −E2,E1 −E3, or E2 −E3 planes,

or solve for ρ(t) to be normal to s(t), s(t) · ρ(t) = 0. The latter solution simplifies to the

following equation:

ρ(t) =
1

2

(

d(t)− σs(t) + cot

(

φ(t)

2

)

s(t)× d(t)

)

(2.13)

2.4 Joints

In dealing with the motion of a rigid body relative to another rigid body, the OpenSim

program employs the definition of a joint. The joint defines the axes of rotation and the axes

of translation as well as the coordinates which define the motions.

Fig. 2.3 shows how OpenSim defines a child body relative to its parent body, and about

which point the transformation occurs. As shown in Fig. 2.1, one can also define the child

body by a vector X in its initial fixed state, and by a vector x in the corotational basis in

its transformed state.
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a
1

a2

a3

e1

e2
e3

E1

E1

E2

E2

E3

E3

P0

X̄P

x̄C

BP

κ

IAR

O

Figure 2.3: A fixed parent body is located relative to the ground origin O by P0. The joint,

located at the instantaneous axis of rotation, IAR, connects the parent body BP and its child

body κ. The child body κ is able to spatially transform about the axes of rotation, given

by {a1, a2, a3}. The center of mass and inertia of each body are defined with respect to

their body-fixed frames by the vectors X̄P and x̄C, respectively. This figure also displays the

corotational basis {e1, e2, e3}.

In OpenSim, there is a variety of the types of joints that may be employed (pin, ball,

slider, etc.). The most versatile and common joint is known as a CustomJoint. This joint

employs the spatial transform:

PX(q)B =

















PRB(x1, x2, x3)

x4

x5

x6

















, (2.14)

where PRB represents the components of the rotation tensor from the parent body to the
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child body, qi are the internal coordinates of the joint and xi are the spatial coordinates for

the rotations and the translations along any arbitrary user-defined axes. The relationship

between the generalized coordinates qi and each of the spatial coordinates xi within a joint

are given by:

xi(q) =















































f1(q1, q2, ..., qm)

f2(q1, q2, ..., qm)

...

f6(q1, q2, ..., qm)















































. (2.15)

OpenSim also handles coupled coordinates (i.e., integrable constraints), although its limita-

tion is to single-variate functions. In order to couple (or constrain) coordinates, the model

maker must make use of the CoordinateCouplerConstraint. This feature uses a function to

define the dependent coordinate qdep with respect to an independent coordinate qind:

qdep = f(qind). (2.16)

The coupling constraint then eliminates qdep as an editable coordinate from the coordinate

window. OpenSim has capabilities for linear functions, piecewise linear functions, multipliers,

GCV Splines, and Cubic Splines. However, at present, there is no multi-variate functional

capacity, and hence complex coupling patterns must be treated on a case-by-case basis.

2.4.1 Lumbar Spine Kinematics

For the lumbar spine, the motion of a vertebrae is defined relative to the vertebrae below

it. This starts with the L5 relative to a fixed sacrum S1, the L4 relative to L5, and moves

on up to L1. The joint in this case is the intervertebral disc, which is composed of two

11



basic components: a central nucleus pulposus surrounded by a peripheral anulus fibrosus. In

addition, two layers of cartilage cover the top and bottom of the disc and are known as the

vertebral endplates. The function of the intervertebral disc is to allow 6 degree of freedom

movement between the vertebrae and to transmit load from one rigid body to the other. Fig.

2.4 represents one representation of the axes of rotation between the L4 and L5 vertebrae.

E1

E2

E3
θ

ψ

γ

L4

L5

Figure 2.4: The coordinate system for relative motion at the L4/L5 Joint.

In order to implement the correct spinal motion within OpenSim, it is convenient to limit

the entire system to only 3 coordinates: flexion-extension (ψ about E3), axial rotation (θ

about E2), and lateral bending (γ about E1), defined as the angle between the torso and

ribcage and the sacrum. In order to simplify the model from a 30 degrees-of-freedom system

to a 3 degrees-of-freedom system, we have used a series of kinematic constraint functions

such as Eq. 2.16, as explained in Sec. 2.4, in a method similar to Vasavada et al. [104].

These constraints define the rotations and translations necessary at each joint level in order

to create the overall joint angle (i.e. flexion-extension).
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The kinematic coordinate constraints implemented during flexion-extension are plotted

in Fig. 2.5. This is a plot of the relative primary rotations (about E3) of the 5 joints during

a flexion-extension movement, and excludes any coupling or translational motion. This data

was presented by Wong et al. [114], and measured in-vivo using dual video fluoroscopy

(DVF), a highly accurate kinematic method: with error of less than 0.3 mm in translation

and 0.7 ◦ in rotation [106]. The downside to this study is that Wong et al. have not presented

any coupling data for this motion, nor do they present the kinematics for any other trunk

motion.

20 6040 800-20-40

5

10

15

20

-10

-5

L1/L2

L2/L3

L3/L4

L4/L5

L5/S1

Relative Motion (degrees)

Flexion (deg.)Extension (deg.)

Figure 2.5: The relative motion of each vertebral level as a function of the overall flexion-

extension angle. This data is a linear best fit from Wong et al. [114].

Characterizing the motion of the joints in this way is not completely physiological, as it

does not incorporate the passive structures within the intervertebral disc, which is covered
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in the next section.

White and Panjabi’s in-depth review of spinal kinematics in 1978 [9] is a valuable primer

on the motion of lateral bending. Several studies have investigated these kinematics. Pearcy

used an in-vivo 3D X-ray technique in 1984 [85]. In 1989, Yamamoto et al. used cadaveric

spines in a motion capture system and applied pure moments to determine segmental motion

[115]. Since then, several other studies have reported data on ranges of motion during

lateral bending [33, 54, 91, 102]. For the kinematic constraints used to describe the primary

rotations at each level during lateral bending, data from Rozumalski et al. was used [91] as

a percentage of the total ROM. Troke et al.’s extensive ROM study of 405 asymptomatic

subjects presented a total ROM of 29-16 degrees (declining linearly with age) in lateral

bending [102]. We chose the data presented for a male 30 years of age, which resulted in a

total ROM of 25 ◦. The data used for lateral bending is shown in Table 2.1:

Table 2.1: Range of Motion at each vertebral level during maximum lateral bending of 25 ◦.

Lat. Bend. [91] Axial Rot. Flex-ext

L1/L2 4.7 0.0[85] 2.0[85]
L2/L3 6.25 2.2[54] 2.1[54]
L3/L4 6.13 3.8[54] 1.3[54]
L4/L5 4.53 2.8[54] 1.9[54]
L5/S1 3.39 1.0[85] -1.0[85]

Li et al. study in 2009, used MR images which were imported into 3D modeling software,

presents the most comprehensive coupling data for lateral bending [54]. The pitfall being

that only data for the L2/L3, L3/L4, and L4/L5 levels are presented. Data for the other

two levels was taken from Pearcy and Tibrewal [85].
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Studies of axial rotation go as far back as 1967 with Gregersen and Lucas’ study using

Steinman pins [39]. Lumsden et al. studied the kinematics of axial rotation in 1968 using

invasive in vivo Steinman pins, yet reported rotation of up to 6 ◦ at the L5/S1 joint [57].

It is well known that there is a strong coupling nature during axial rotation of the lumbar

spine [9, 85]. In particular, axial rotation has been known to cause lateral bending in the

opposite direction [79]. In addition, considering that the collagenous fibers of the annulus of

the IVD would be irreversibly damaged if stretched beyond 4% of resting length [42], Bogduk

calculates that axial rotation of a vertebrae is limited to about 3 ◦ without injury to the disc

[12]. Therefore, any in-vivo data which presents segmental axial rotations greater than 3 ◦

in a healthy subject is questionable.

Fujii et al. performed an extensive in vivo 3D MRI study of the kinematics of axial

rotation in 2007 [30]. The accuracy of this system is less than 0.4 ◦ for rotations, and less

than 0.5 mm for translations [47]. Their study rotated the trunk externally in increments

of 15 ◦, up to 45 ◦, while measuring segmental translations and rotations for all 6 degrees-

of-freedom. Their results confirm Panjabi’s statement of strong coupling of lateral bending

during axial rotation, however the directions are in the opposite of those presented by White

et al. [9], but agree well with the directions presented by Pearcy et al. [85]. Their data

presents complex non-linear functions and asymmetric movement patterns. This left-right

asymmetric kinematics has been confirmed in a more recent dual fluoroscopic study by

Kozanek et al. in which he reports ’facet tropism’ towards one side [51]. We have simplified

the results by Fujii et al. by assuming a linear relationship and symmetry in left and right

rotation. Lastly, Fujii et al. also measured maximum voluntary trunk rotation as 56.1±7.5 ◦.

The maximum axial rotation at each level is shown below, extending the linear regression
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from 45 ◦ to 56 ◦:

Table 2.2: Range of Motion at each vertebral level during maximum axial rotation of 56.1 ◦

to the left. Negate all values for right AR, except for Flex-ext. which stays positive during

the motion. Data from Fujii et al. [30].

Axial Rot. Lat. Bend. Flex-ext Lat. Trans.(mm)

L1/L2 1.62 2.12 1.0 0.37
L2/L3 1.87 3.73 1.5 1.50
L3/L4 2.37 4.73 1.6 2.00
L4/L5 2.37 2.49 1.5 1.37
L5/S1 2.20 -0.87 2.6 1.24

2.4.2 Intervertebral Stiffness Matrix

The complex fibrous structure of the intervertebral disc makes it a passive stiffness struc-

ture. In order to parametrize its properties, Panjabi proposed the use of a stiffness matrix

K in 1976 [82]. Stokes and Garnder-Morse implement this in their lumbar spine model [96],

which has lead to several in-vitro experimental studies [31, 71, 80, 98] on the determination

of the 36 components:

K =
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This stiffness matrix is quite convenient in representing the complex coupling in the interver-

tebral disc, as well as the compliance of the disc. In addition, it is convenient when modeling

changes in disc properties: one only has to change the 36 components of K, and the kine-

matics and passive structure of the joints will change. The relationship of the intervertebral

stiffness to the forces and moments applied at the joint follow the simple relationship:

F = Kd (2.18)

where F is a 6 component vector with 3 force components, and 3 moment components, K is

the 6X6 stiffness matrix, and d is a 6 component displacement of the generalized coordinates

(3 for translations, and 3 for rotations):
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Unfortunately, OpenSim does not currently have such capabilities. However, with the use of

the SimBody [94] toolkit, and a development plugin, this type of mobilizer may be possible.

Currently, an option that exists is the use of the BushingForce set within OpenSim. This

BushingForce allows the definition of 6 stiffnesses, which lie in the direction of primary

motion (essentially the diagonal components of the stiffness matrix K).
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2.5 Muscles

The definition of muscle actuators is straightforward, but has strong capabilities in cus-

tomization and complexity. In general a muscle is defined by two points, each on a separate

rigid body in the BodySet. If these points are fixed points, which they are by default, then

these muscles stay fixed within the rigid bodies’ coordinate system. In other words, these

points transform under the same spatial transform of the body as explained by Eq. 2.14.

These muscle points can be specified explicitly by their {x,y,z} coordinates if known, or can

be picked graphically relative to some bone geometry using the GUI.

2.5.1 Intermediate Muscle Attachment Points

One advantage to using OpenSim is its nice implementation of intermediate muscle points

as fixed points, via points, or moving points. This capability allows for more physiologically

correct muscle modeling. For example, if it is known that the muscle will pass through bone

geometry, one can implement an intermediate point to avoid such non-physiologic motion.

• A fixed intermediate point is simple. It is fixed to some rigid body in the model,

which could be any rigid body at all. The point would transform with the body’s

coordinate system. The muscle’s line of action would then be the shortest straight

distance between the three muscle points.

• A via point is similar to a fixed point, except that one is able to define the via point for

only a specific range of motion. For example, say you only want the extra intermediate

point to exist in the range of 30 − 50 ◦ of knee flexion. A via point allows this. The
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point is nonexistent outside this coordinate range, and acts like a fixed point within

this range.

• A moving point is a point whose coordinates in the body’s frame of reference are some

user defined functions of some joint coordinates, and not just simply fixed.

Fig. 2.6 shows an example implementation of the fixed points used while modeling the

erector spinae in our model.

Figure 2.6: An example of fixed intermediate points (shown as yellow points) used for the

longissimus thoracis pars thoracis in the lower back. Each point is attached to the lumbar

vertebra at its level.
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2.5.2 Muscle Wrapping

Muscle wrap surfaces are another way to ensure physiological lines of action. A wrap

surface is also a simple yet powerful implementation. The user defined the type of geometric

wrap shape they would like to use (spheres, ellipsoids, cylinders, or torii), its geometric

parameters, and define the wrap objects location within a rigid body. This surface is then

considered fixed within the body’s coordinate frame, and again transforms with it via the

same axes of rotations. The user then defines which muscles they would like to wrap on

these wrap objects.

If the straight-line path of a muscle intersects a wrap object, an algorithm calculates a

new path between the two points to wrap smoothly over the object. OpenSim uses two new

wrap points: one at the tangent point where the muscle initiates contact, and another where

it breaks contact. The muscle then follows the surface of the object between those points.

There are three types of wrapping methods used in OpenSim. The reader is directed to their

documentation on the topic for more details [3].

There are advantages and disadvantages to wrap objects. The advantage is that they

are simpler to implement if the model has several muscles that need to wrap against such

a surface. In addition, the surfaces provide smooth and physiological lines of action which

make sense. The disadvantages are that the computational time of the program is increased

dramatically if there are many wrapping muscles, and that the muscles may“jump” off the

wrapping surfaces and cause problems. Figure 2.7a shows an example where a cylinder was

used to imitate the wrapping of the erector spinae in the lower back, and Fig. 2.7b shows

the moment arm produced by that muscle during a flexion-extension motion.
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Figure 2.7: a) An example of a cylindrical wrapping surfaces (in cyan) used for the iliocostalis

lumborum pars thoracis in the lower back. b) The moment arm of this muscle as a function

of flexion-extension. Note the spike in the moment arm due to the muscles jump off the

surface.

The drastic spike in the moment arm is due to a “jump” of the muscle off of the wrapping

surface. The issue here is that the curvature of the spine increases (the radius decreases) as

the body extends. However, the wrap cylinder keeps a constant radius during the motion.

This causes the muscle to “jump” off the surface. Since OpenSim calculates the moment

arm as ∆L/∆θ, this jump causes a falsely-large moment arm calculation.
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2.6 OpenSim Toolbox

OpenSim uses a dynamics engine known as SimBody, based on the work by Schwieters

and Clore [94]. This a multibody dynamics toolkit that employs the necessary spatial tran-

formations in order to run the simulations and the GUI manipulation in OpenSim. OpenSim

has a powerful toolbox that can be used to run dynamic simulations and gain insights on

experiments. The following tools are helpful for researchers around the world to input their

own types of marker data, or joint torque measurements into the program, while OpenSim

can then output the muscle forces and excitations, as well as kinematics required to perform

such tasks. These tools represent the strong computational capabilities of OpenSim.

2.6.1 Inverse Kinematics

The Inverse Kinematics tool is provided as an interface and solution to converting marker

data from a Motion Capture system to actual joint coordinate values as a function of time.

The only work needed from the user is to work on scaling the marker data from the MoCap

system to the musculoskeletal model in OpenSim. This includes geometric scaling as well as

scaling of mass and height of a specimen.

2.6.2 Inverse Dynamics

The Inverse Dynamics tool is designed to take in a motion file, which fully defines each

joint coordinate as a function of time, and uses an algorithm to determine joint forces and

torques needed to create such a motion. This tool is described in further detail by Buchanan

[17].
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2.6.3 Static Optimization

Static optimization tool takes in as an input the motion file, and the joint forces and

torques, and uses a static optimization algorithm to determine the muscle forces and activa-

tion patterns in order to keep static equilibrium of the model.

2.6.4 Computed Muscle Control

The Computed Muscle Control (CMC) tool is used to compute muscle excitations that

will drive a model to track a set of desired kinematics, as specified by the kinematics input

[101]. The user inputs initial states (initial joint angle, velocities, muscle activation levels

and fiber lengths) into the CMC tool, and the CMC uses a combination of PD control and

static optimization to determine muscle excitations. The details of the CMC algorithm and

its use during forward dynamics, see Thelen et al. [101]. What is important here is the need

to add reserve actuators to the model in case the muscles are not strong enough to track the

motion. The values of these reserve actuators are a good indicator of whether the muscle is

strong enough or not.

2.6.5 Forward Dynamics and RRA

The Forward Dynamics Tool drives a dynamic solution given the inputs of the CMC

muscle excitations. It has been shown that using CMC to drive forward dynamics has

produced high accuracy at remarkable computational speeds [100]. One may also choose

to input their own excitations from experiment, or input their own external forces if they

are known. A 5th order Runge-Kutta-Feldberg integrator is used in an open-loop system,
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and provides kinematics. Ideally, these kinematics would match the motion file specified

during CMC. However, since this is an open-loop system, the trajectory may deviate in

longer simulations due to error propagation. Residual Reduction is an algorithm used to

minimize the effect of marker data error and modeling error that may lead to substantially

large residual forces that are non-physical (up to 50% of body weight). During a motion such

as gait, the laboratory would measure a ground reaction force. In order to equilibrate this

reaction force, the tool creates residual actuators, which provide extra forces and torques

to balance Newton’s Second Law. In order to reduce these residual forces, the Residual

Reduction Algorithm makes slight adjustments to the torso’s center of mass, as well as slight

rotations and translations to otherwise “welded” joints, which may then have an effect of

balancing Newton’s second law with minimal need for residuals.
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Chapter 3

Musculotendon Actuators

3.1 A Hill-Type Model

Muscle-tendons act as force generating spring and damper systems. Their force-generating

capacities can be described in various ways. In the literature, a Hill-type model [43, 116]

has been widely accepted to estimate tendon and muscle force. This model is composed of

one non-linear spring (representing the tendon) attached to an active contractile element

in parallel with a passive elastic spring (see Fig.3.1a). Anatomically, a pennation angle is

sometimes seen between the muscle and tendon (see Fig. 3.2). In order to familiarize the

reader with some of the variables, terms, and notation used in this section, please refer to

Table A.1 in the Appendix.

For the purpose of modeling the muscle, algorithms refer to the force-length, and force-

velocity curves of the muscle. A typical, normalized force-length can be seen in Fig. 3.1c.

The force-length curve of the musculotendon actuator must then be scaled by a few factors:

maximum isometric force (FM
o ), optimal fiber length (ℓMo ), and tendon slack length (ℓTs ).
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Figure 3.1: A Hill type muscle model used to represent the force generating capacity of a

musculotendon actuator. a) The mechanical model. b) A normalized representation of a

tendon’s force vs. strain curve. c) A normalized muscle force-length curve. Image from

Arnold et al. [8].

3.2 Thelen’s Muscle Model

In 2003, Thelen [99] modified the muscle model created by Delp et al. [24] in order to

be able to make age-based changes. For this reason, Thelen simplified the model into a

Gaussian portion, and an exponential portion [99]. The active force-length relationship is

given as the following Gaussian function:

fl = e−(L
M

−1)2/γ (3.1)
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Figure 3.2: A representation of a musculotendon with parallel muscle fibers which insert on

the tendon at the same pennation angle α. Notice that the total tendon length includes the

free tendon and the aponeurotic tendon (the stippled) area. Image from Hoy [44].

where fl is the normalized force FM/FM
o , and L̄M is the normalized muscle length, and γ is

a gaussian shape factor. According to Gordon et al.[36], a value of 0.45 for γ approximates

the force-length relationship of individual sarcomeres well.

The passive force-length relationship is given as an exponential function:

F̄ PE =
ek

PE(L
M

−1)/εM
0 − 1

ekPE − 1
(3.2)

The force-length curve is also assigned a particular shape factor which determines it’s

general shape distribution. The advantage of this muscle model is it’s ease of adaptability

depending on age and other specific parameters. In addition, this model is parametrically

defined. The disadvantage is whether this approximation is as accurate as the Delp model

presented in Sec. 3.1.

Thelen also presents a parametric equation to model the force generated due to tendon

strain. He uses an exponential function for an initial region, and then by a linear function

afterwards:

F̄ T =















F
T

toe

ektoe−1
(ektoeε

T /εT
toe − 1); εT ≤ εTtoe

klin(ε
T − εTtoe) + F̄ T

toe; εT > εTtoe

(3.3)

The value for the non-linear stiffness used is ktoe = 3, and the assumption here is that
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Figure 3.3: A Thelen type muscle model based on a Gaussian distribution for active muscle

force, and an exponential function for passive muscle force. It is assumed that activation,

shown as a, scales the active part of the force-length curve.

the transition from linear to non-linear occurs at F̄ T
toe = 0.33. To maintain continuity at

the transition region, Thelen determined the transition strain, εTtoe to be 0.609εT0 , and the

stiffness klin to be 1.712/εT0 [99].

The advantage to using Thelen muscle models is that making age-based changes are

simpler and more transparent. For example, Table 3.1 gives a summary of the parameter

adjustments between young (age 30) and old (age 70) musculotendon models.
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Table 3.1: Musculotendon parameters adjusted to reflect nominal changes in muscle mechan-

ics occuring between the ages 30 and 70. Table from [99].

τdeact V M
max

(ms) (LM
0 /s) εM0

¯FM
len

Young 50 10 0.6 1.4
Old 60 8 0.5 1.8
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Chapter 4

Lumbar Spine Muscle Architecture

Even with Zajac and Hill’s notable work in the simplification and mathematical model of

musculotendon actuators, the problem remains with determination of the necessary parame-

ters (FM
o , ℓMo , α, and ℓTs ) [43, 116]. Unfortunately, these parameters are non trivial to attain

and rely on detailed anatomical studies, assumptions, and estimation algorithms [32]. The

muscle architecture data for all 238 muscle fascicles is presented in the Appendix in Table

A.2.

4.1 Anatomy and Morphology

The lower back musculature consists of 9-10 muscle groups, depending on how they are

viewed. Arjmand et al. argue that 7 primary groups are necessary for a biomechanical

model of the lumbar spine. de Zee et al. [22, 41] ignores the transverse abdominis (TA),

as it has been shown that this group only acts to produce inter-abdominal pressure (IAP),

and since IAP is not modeled, it is not necessary to model the TA muscle group. However,
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Cholewicki and McGill [19] have shown that intra-abdominal pressure is a mechanism for

the stabilization of the spine. For this reason, we plan to model IAP in the model in the

future.

4.1.1 Erector Spinae

The erector spinae is the broadest and largest muscle group in the lower back. Gray

describes it has a “large fleshy mass which splits, in the upper lumbar region into three

columns, viz., a lateral, the iliocostalis, an intermediate, the longissimus, and a medial, the

spinalis [38].” Bogduk, performed an anatomical study in 1980 to reappraise the anatomy

of the lumbar erector spinae [11]. Bogduk describes the human lumbar erector spinae as

two muscle groups: “the longissimus thoracis and the iliocostalis lumborum. Furthermore,

each of these muscles has two components: a lumbar part, consisting of fascicles arising from

lumbar vertebrae, and a thoracic part, consisting of fascicles arising from thoracic vertebrae

or ribs [12].” we will be implementing the model of the erector spinae as described in detail

in [14], [62], and [61]. Following this description, the four parts of the lumbar erector spinae

are: longissimus thoracis pars lumborum, longissimus thoracis pars thoracis, the iliocostalis

lumborum pars thoracis, and iliocostalis lumborum pars lumborum.

4.1.1.1 Longissimus Thoracis

The longissimus thoracis pars lumborum is comprised of five fascicles, each originating

from a narrow area on the ilium and insert into the adjacent medial end of the dorsal surface

of the transverse process of a lumbar vertebrae (see Fig. 4.1a). The fascicles from the L1 to

L4 vertebrae converge into the lumbar intermuscular aponeurosis (LIA).
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(a) (b)

Figure 4.1: An illustration of the fascicles of the longissimus thoracis pars lumborum. a) The

L1-L4 have long caudal tendons which form the LIA. Image taken from [61] b) as modeled.

The line of action of this lumbar portion of the longissimus can be resolved into its

vertical (y), posteroanterior (z) and sagittal (x) components. The large vertical vector of the

longissimus depicts that upon contraction, it can laterally flex the lumbar vertebrae. It can

also act as a posterior sagittal rotator, but because its line of action lies close to the center

of rotation, it is not quite efficient at this type of movement. It can also be seen that during

flexion, the longissimus acts to resist anterior translation.

The thoracic portion of the longissimus is the longissimus thoracis pars thoracis. These

thoracic fibers originate from the ribs and the transverse processes (tp) of T1 down to T12,

and insert into the spinous processes (sp) of the lumbar vertebrae. For example, the fascicles
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from the T2 tp attach to the L3 sp, and those from T5 attach to L5, while those from T7 to

S2 or S3.

(a) (b) (c)

Figure 4.2: The longissimus thoracis pars thoracis. a) a left lateral view emphasizing the

wrapping characteristic of the thoracic fibers at the ribcage and the lower back. b) a poste-

rioanterior view showing the the angular disposition of the costal fibers. Image taken from

[62]. c) as modeled

Together, the longissimus thoracis pars thoracis is designed to act on the thoracic spine

and ribs. However, it indirectly acts on the lumbar vertebrae during flexion and extension,

as well as a small contribution to lateral bending, due to its oblique orientation.
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4.1.1.2 Iliocostalis Lumborum

The iliocostalis lumborum pars lumborum is comprised of four fascicles from the tip of

the transverse processes of the L1 to L4 vertebrae to the iliac crest (see Fig. 4.3).

(a) (b)

Figure 4.3: The iliocostalis lumborum pars lumborum. a) Image from Bogduk and Macintosh

in [61]

The fascicles of the iliocostalis are better at producing axial rotation than the longissimus,

as their attachment to the tips of the transverse process increases their moment arms on the

axis of rotation. The iliocostalis lumborum pars thoracis (ILpT) attaches from the lower

eight ribs via a thick rostral tendon across the length of the iliac crest via a caudal tendon,

which composes much of the erector spinae aponeuorosis (ESA)[61]. Our model’s attachment

points follows the description of the 8 muscle fascicles by Macintosh and Bogduk [62]. This
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description includes wide attachment locations on the iliac crest, and therefore, the centroid

of these lines was chosen as an appropriate fascicle origin.

(a) (b)

Figure 4.4: a) The iliocostalis lumborum pars thoracis. b) The attachment points of the

thoracic portions of the iliocostalis and the longissimus. Images from Macintosh and Bogduk

[61].

4.1.2 Abdominal Muscles

The abdominal muscles are global muscles, responsible as primary flexors of the lumbar

vertebrae, as well as axial rotators. The abdominal muscles that are necessary for such

a musculotendon model are the rectus abdominis, the external obliques and the internal

obliques. Generally, these muscles have each been modeled by two lines of action (one

for the right side, and another for the left). However, Stokes and Gardner-Morse’s [97]
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reassessment gave a more detailed description of the external and internal oblique muscles.

Using transverse section photographs from the Visible Human Project and two dissected

cadavers, they modeled the obliques with six fascicles each. This description is used in our

model.

The external obliques are the most superficial of the muscles. Its fascicles all arise from

the lower 8th to 12th ribs and attach to the Iliac crest, either directly or via the inguinal

ligament [97]. Its line of action is designed well as a rotator of the thoracic spine and ribcage.

(a) (b)

Figure 4.5: a) The six fascicles of a) the internal oblique muscles and b) the external obliques.

Image from Stokes and Gardner-Morse [97].

The internal obliques have an almost perpendicular line of action to the external obliques,

see Fig. 4.5. They directly beneath the externals, and originate from the thoracolumbar
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fascia and Iliac crest and insert into the abdomen, and up to the 10th-12th ribs and sternum.

Its line of action is well suited for lateral bending as well as rotation.

The rectus abdominis is responsible for the flexion of the lumbar spine, and along with

the erector spinae, is considered the primary mover of the spine. Gray describes it as, “a

long flat muscle, which extends along the whole length of the front of the abdomen, and is

separated from its fellow of the opposite side by the linea alba [38].” He describes its line-

of-action by explaining that its ligaments attach from the crest of the pubis to the cartilage

of the 5th-7th costal ribs and the xiphoid process of the sternum (see Fig. 4.6a). Dumas et

al. confirm this anatomical description and recommend modeling it as 3 fascicles [27]. Yet,

for the sake of simplicity, we follow the description of the rectus abdominis as modeled by

Stokes and Gardner-Morse, and Wilkenfeld et al. [97, 112].
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(a) (b)

Figure 4.6: The rectus abdominis muscle a) as depicted and described by Gray. Image from

[38]. b) as modeled with two lines of action.

In modeling the rectus abdominis, there was a significant amount of consideration towards

wrapping its fascicles outward against an abdomen (represented by an ellipsoid). However,

after experiencing incorrect moment arm calculations as well as the muscles jumping off of

these surfaces during extension motions, they were removed. If a more suitable wrapping

method is arrived at, and ensures more accurate moment arms, they will be considered.

4.1.3 Psoas Major

The psoas major was studied in great detail by Bogduk and Pearcy in 1992 [15], and

Santaguida and McGill in 1995 [92]. The morphology of the psoas major consists of fleshy
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fibers from the transverse processes or intervertebral discs of the lumbar vertebrae and attach

via a common tendon to the femur [15]. Fig. 4.7a presents a good anatomic description of

the lines of action of the psoas major, and its attachment sites on the vertebral column.

The psoas’ main role is as a flexor of the hip [38]. Yet, EMG studies dated as far back

as 1966 show psoas activity during forward bending, lifting and upright standing [76], [77].

This implies the role of the psoas as a stabilizer for the lumbar spine. According to Bogduk

et al., due to its relatively small moment arms, the psoas has no substantial role as a flexor or

extensor of the lumbar spine, yet it exerts large compression and shear forces on the lumbar

joints [15]. A study in 1991 by Janevic et al. reveals that this large compression force helps

to increase spinal stiffness and thus provide lateral stability [48]. Lastly, Santaguida et al.

firmly state that the psoas cannot act as a ‘derotator’ of the spine, nor can it control spinal

posture, but has the moment arm to cause lateral flexion, and stabilize via compression [92].

For this reason, we have included the psoas major to further understand and confirm its

action on the lumbar spine, as well as its ability to stabilize the spine by increasing spinal

stiffness.
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(a) (b)

Figure 4.7: The psoas major muscle. a) The sites of attachment: shaded areas (left) and

lines of action (right) of the psoas major at the lumbar level. Image taken from Bogduk et

al. [15]. b) as modeled.

4.1.4 Multifidus

The multifidus’ purpose has not been fully understood. According to EMG studies,

it appears to be active during all motions of the lumbar spine. Gray describes it as a

contralateral rotator of the spine [38]. In general, it is viewed as a stabilizer of the lumbar

spine [59, 56, 89, 108, 109, 108]. Following the description by Macintosh et al., “the principal

fascicles of the lumbar multifidus arise from the lateral surface of the caudal edge of the

spinous process...the caudal attacments of these fascicles are to the mamillary processes [of
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the vertebra directly below] and to certain areas on the iliac crests and the dorsal surface

of the sacrum [59].” Fig. 4.8a is a representation of the morphology at the L1 vertebral

level. A similar pattern is seen for levels L2-L5, yet with fewer fibers. The entire multifidus

muscle group as modeled in our model, is depicted in Fig. 4.8b. From an anteroposterior

(a) (b)

Figure 4.8: The lumbar multifidus. a) the fibers from the L1 spinous process. Image from

[59] b) the entire muscle group in our model.

view of the multifidus, as shown in Fig. 4.8, its line-of-action can be clearly resolved into

a horizontal and vertical vector. This downward action makes the multifidus effective as a

posterior sagittal rotator of each vertebra. Since its fascicles are nearly perpendicular to the

axes of posterior translation, it is not effective to produce any posterior shearing force. The

multifidus is also commonly viewed as an axial rotator, yet Macintosh ⁀et al.’s description

suits it as more of a stabilizer during rotation [59, 60]. This viewpoint is shared by Ward et
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al. in their recently extensive architectural analysis of the multifidus [108].

4.1.5 Quadratus lumborum

The functions and actions of the quadratus lumborum are obscure. Its muscles connect

the ilium of the pelvis to the twelfth rib and to the lumbar vertebrae. In addition, there

are fascicles that attach the twelfth rib to the L3 vertebrae. In general, it is categorized

into three subgroups: the anterior fibers, the middle fibers (lumbocostals), and the posterior

fibers (see Fig. 4.9).

(a) (b)

Figure 4.9: The quadratus lumborum: a) as depicted by Phillips et al, where the right side

depicts the lumbocostal fibers, and the left side, the other fibers. Image from [88] b) as

modeled into our model.
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Similarly to the multifidus, researchers’ EMG studies have found the quadratus lumborum

to be active during a variety of lumbar motions. For this reason, it is considered to be a

stabilizer of the lumbar spine, like the multifidus [67, 61, 69, 70]. A particularly mysterious

characteristic of the quadratus lumborum noticed during Phillips’ recent anatomical study

was the inconsistency of the existence of muscle fascicles across subjects: some fascicles

existed in some subjects, and not in others [88]. Following their guidance, only fascicles

which existed in at least 50 percent of the subjects were modeled.

We do not expect the quadratus lumborum to exert much of a compression force on the

lumbar spine. According to Phillips et al.’s model [88], it was only able to produce about

200N of compression force at each level, which is minimal in comparison to the erector spinae

and multifidus, which are able to produce a range of 1800 to 2800N of force [14].

4.1.6 Latissimus Dorsi

The most comprehensive architectural study was undertaken by Bogduk et al. in 1998.

They describe the muscle as “a large fan-shaped muscle covering the posterolateral aspect

of the thorax. Rostrally, all of its fibres converge on a thick flat tendon that twists under

the teres major to insert into...the humerus [13].” They modeled it with thirteen fascicles on

each side, five from the tips of the lumbar spinous processes, six from the lower six thoracic

spinous processes, and costal fibers from the 11th and 12th ribs. Fig. 4.10a gives their

depiction as shown by Bogduk, and Fig. 4.10b shows the LD as modeled in our model.

It is widely known that the latissimus dorsi’s morphology and activation make it pri-

marily an adductor, extensor, and rotator of the arm. However, the latissimus dorsi’s (LD)
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(a) (b)

Figure 4.10: The latissimus dorsi muscle group. a) as depicted by Bogduk et al. [13]. The

dotted line j defines the transition between the muscle fibers and their tendinous aponeurosis.

b) the 13 fascicles as modeled.

attachment to the lumbar vertebra gives the impression of a non-negligible biomechanical

effect on the motions of the lumbar spine. In addition, its EMG activity could imply it has

a synergistic effect on the flexion of the lumbar spine. McGill and Norman concluded that

the extensor moment exerted by the LD on the thoracolumbar fascia is on the order of 4% of

the total moment during lifting [72]. Bogduk et al. confirmed these results with their model,

in which the LD seemed unlikely to produce a moment exceeding 12 Nm (less than 5% of

the moment required for heavy lifting) [13]. Nevertheless, its inclusion is computationally

inexpensive, and hence its fascicles have been included as a study of their biomechanical
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effect on the lumbar spine movements and spinal stability.

While incorporating the LD into our model, the only complexity arose in ensuring physi-

ological wrapping around the ribcage. This wrapping was ensured by the use of two ellipsoid

wrapping surfaces which were manually rotated and translated until a physiological wrapping

was observed.

4.2 Physiological Cross Sectional Area

According to Panjabi, a muscle’s physiological cross sectional area (PCSA), can be scaled

linearly to determine its maximum force generating capacity to a first approximation. The

determination of PCSA is also a topic of dispute among the literature. A basic method,

used prominently by Bogduk and Macintosh during their extensive anatomical studies of the

spine [11, 12, 14, 61, 62], is simply muscle volume divided by muscle fascicle length:

PCSA =
V olmf

ℓmf
(4.1)

Stokes and Gardner Morse use a similar algorithm, but take the pennated muscle fiber in

account [97]. Others, such as Han et al., use a series of Computed Tomography (CT) scans

compiled to produce an estimate on PCSA [40, 45].

Due to different methods and varying subject ages, reported values of PCSA for the

lumbar musculature are also inconsistent. In particular, some anatomical studies only fo-

cused on particular muscle groups, and ignored others. Therefore, data for the lumbar

musculature was gathered from several sources, and was not from a cohesive set of subjects

[14, 25, 88, 89, 97]. Piecing together data from several dissection studies is not ideal [8] and

in order to increase accuracy and consistency, the data for muscle groups was normalized
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against the erector spinae and compared to the data presented by Marras et al. in 2001 in

an MRI study of 20 females and 10 males. Marras et al.’s data presents asymmetric muscu-

lature from the right to the left of the body. However, for the sake of simplicity, our model

kept a symmetry from right and left sides. Table 4.1 gives a summary of a comparison of

PCSA for the entire muscle group, where the data presented by our model is simply a sum

of all fascicles within that group.

Table 4.1: Comparison of previously reported PCSA (mm2) values in lumbar spine models.

Data is for a single side only. Note, the data presented here by Marras is of Males, right

side.

Muscle Group Our Model Marras[64] Delp[25] Shirazi-Adl[6] McGill[66]
Average Age and Sex NA 26, M 67, M & F NA NA, M

Quadratus lumborum 434 526 120 313
Rectus abdominis 567 905 260 567
Latissimus dorsi 970 2174
Multifidus 1058 765
Internal oblique 1345 1026 1345 1950
External oblique 1575 1006 1575 1600
Psoas 1463 1949 1374 850
Erector spinae 2788 2595 1000 3002
Longissimus thoracis 1608 590 1709
Iliocostalis lumborum 1180 410 1293

The force generating capacity constant of a muscle fiber is also a topic which has not

been fully agreed upon. The general relationship which has been used is:

FM
o = K × PCSA (4.2)

However, the estimation of the Force coefficient K, has values ranging from 34-100 N/cm2 .
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Table 4.2 shows the distribution of the value of Specific Tension, K, reported in the literature.

Since K determines the scaling of the force-length curve, it is a critical factor, and has a large

effect on a biomechanical model. In the most recent models, a value of K in the range of

35-61 N/cm2 is most common [8, 41, 104]. To stay consistent with our strong use of Bogduk

and Macintosh’s muscle data, a K value of 46 N/cm2 was used.

Table 4.2: Range of Specific Tension values presented in the literature

Publication Specific Tension (N/cm2)

Bean et al., 1988 [10] 22.5-38.5
Farfan, 1973 [29] 34.4
Weis-Fogh and Alexander, 1977 [110] 40
Bogduk et al., 1992 [14] 46
El-Rich et al., [28] 60
Arnold et al., 2000 [7] 61
Ikai and Fukunaga, 1968 [46] 62
Van Dieen and Kingma, 1999 [103] 88
Schultz and Andersson, 1981 [93] 100

4.3 Pennation Angle

Pennation Angle must also be measured by anatomical studies for determination. Delp

et al. did a thorough study on the muscles of the erector spinae, quadratus lumborum, and

rectus abdominis muscles [25]. In this study, he reported the pennation angle of these muscles

as a group by taking a selection of muscle fascicles and averaging them. Our assumption is

that the pennation angle for a muscle group is fairly consistent among all fascicles in that

muscle group. Therefore, the pennation angles determined by Delp were used across these
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muscles.

Anderson et al. reports that the cervical multifidus has negligible pennation angle [4].

For this reason, our model also excludes pennation angle for the lumbar multifidus. Similarly,

for the latissimus dorsi muscle group, due to lack of data in the literature on pennation angle,

we assumed a zero degree pennation. Ward et al. reported pennation angle of the psoas

major in his work on the human lower extremity [8, 107].

4.4 Optimal Fiber Length

Optimal fiber length is the length at which the active muscle generates its largest force. In

addition, it is the length past which passive force is developed. In order to determine optimal

fiber length, an accurate measurement of the fiber’s resting sarcomere length is needed,

in addition to the muscle’s resting fiber length. A photo-electric method for determining

sarcomere length in vertebrates was developed by Gordon et al. in 1966 [36]. Murray et

al. use a modern adaption of this method using laser diffraction through the muscle fiber,

and measuring the pattern with a micrometer [75]. With an accurate measurement of the

resting sarcomere length and then normalizing it against an optimal sarcomere length, one

can scale the fiber, and get a general determination of optimal fiber length:

ℓMo = ℓF ×
ℓSo
ℓS
, (4.3)

where ℓSo is the optimal sarcomere length of whichever animal is being studied, and ℓS is the

measured sarcomere length. In humans, an optimal sarcomere length of 2.7 to 2.8 µm has

been reported [25, 105, 107]. The resting sarcomere lengths for the erector spine, quadratus

lumborum, and abdominal muscles were reported by Delp et al. [25]. Ward et al.’s recently
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extensive studies on the multifidus and psoas major provides the sarcomere length and fiber

length’s of these groups [107, 108, 108]. The only data unavailable was for the latissimus

dorsi group. For this group, we took an average of the back muscles, and took the sarcomere

length to be 2.3µm.

4.5 Tendon Slack Length

A tendon is a passive non-linear element with a relatively high stiffness (about 180 N/mm)

[55]. A tendon is assumed to generate maximum isometric force at only 3.3% strain [53].

Tendon slack length is the length at which the tendon is slack (i.e. the un-stretched spring

length). This parameter is also the most difficult to determine, and several studies have

attempted to create algorithms for its estimation [53, 63]. Because of its large passive

stiffness, the force-length curve of a musculotendon is highly sensitive to correct data. Fig.

4.11 shows how the initial slack length guess produces dramatically different moments at the

knee joint.
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Figure 4.11: The optimization method of determining tendon slack length by Lee et al. [53].

Note the large effect of an incorrect initial tendon slack length guess has on the knee moment.

Since sufficient data does not exist in the literature on the tendon slack lengths of detailed

fascicles of the lumbar musculature, they were estimated by generalizing the relationship

between muscle length and tendon slack length in Eq. 4.4:

ℓTS ≈ ℓMT − ℓf cos(α). (4.4)

Where α is the fascicles pennation angle, and ℓMT and ℓf are musculotendon length and

known fascicle length, respectively, at a neutral position. In releasing this model on the

SimTK website, we hope that the research community will eventually supply the exact

tendon slack lengths for the detailed musculature.
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Chapter 5

Open Source Lumbar Spine Model

and Results

In order to build this model, we began with a generic model of the torso and lower

extremity created by Delp et al. [8, 24]. The bone geometry was created using digitized data

from a male subject with a height of 170 cm. The Delp model, however, modeled the entire

torso (which includes the spine and ribcage) as an entire rigid body. Therefore, creation of

a lumbar model with individual vertebrae with relative movements consisted of the tedious

task of the translation and rotation of each individual vertebral body to match the correct

posture of the human lumbar spine.

In addition, it is important to ensure that the lordosis (curvature) of the spine is consistent

with a healthy, average spine. Cholewicki et al. [18] conducted a study with nine cadaveric

spines and reported their average posture.

More recently, Meakin et al. [74] conducted a study using magnetic resonance scanning

of 24 male volunteers, and reported the intrinsic shape of the lumbar spine in the standing
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position. This study, as well as [49], [73] an [90] all report large inter-subject variation in

spinal postures. Therefore, the posture used in this model was consistent with the digitzed

geometry and compared well with the published data of Cholewicki et al. [18] and of Meakin

et al.. The lumbar geometry was then compared with the vertebral anatomical studies of

157 healthy young males, 20-38 years old, performed by Nissan and Gilad [34, 35, 78], as

well as the examination by Panjabi et al. [83] and the intervertebral heights were adjusted

according to the ratio of vertebral height to disc height (VBHp/VDHp).

An image of the full spine model is shown in Fig. 5.1. The final model consists of 13

rigid bodies. However, only the 5 lumbar vertebrae have dynamic mobility. In other words,

the sacrum, pelvis, and femurs are welded to the ground, and the torso (thoracic spine plus

ribcage) is welded to the L1 vertebra. Additionally, the five joints connecting the individual

lumbar vertebrae have been modeled as 6 degree-of-freedom joints, with the axes of these

transformations defined by Fig. 2.4.

At each vertebra level, it was necessary to specify the masses and moments of inertia.

These values were determined from Pearsall et al.’s extensive examination [87] of the mass

and moments of inertia at each trunk level via MR imaging. Pearsall et al. later expanded

upon this work using in vivo CT scans and reported segmental data at each vertebral level

[86]. The data from [86] was incorporated into the model and is presented here in Table 5.1.

The locations of the IAR of each of the 5 joints was taken from the kinematic radiographic

study of ten normal individuals by Pearcy and Bogduk [84]. Fig. 5.2 (cf. Fig. 9 of [84])

shows the mean of the IAR location of the ten individuals.

It is important to note that this study only examined the location of the IAR during

flexion and extension of the lumbar spine. As the location of the IAR differs depending on
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(a) (b)

Figure 5.1: A detailed musculoskeletal model of the lumbar spine with 238 muscle fascicles,

13 rigid bodies, and 5 intervertebral joints. a) in neutral posture and b) at 50 ◦ flexion.

the primary motion (flexion-extension, axial rotation, or lateral bending) [9, 113] and, as

suggested by Ahmadi et al., the arc length pathways of the IAR is significantly longer at

some vertebral levels in patients with lumbar segmental instability (LSI) [2], the ideal model

would incorporate joint IAR locations that are a function of the motion. However, specifying

varying joint locations depending on the motion is not easily implemented in OpenSim, and

can lead to complex model structure. Furthermore, it has been shown that the determination

of the IAR by planar radiographs can lead to large error propagation for finite rotations [81].

In general, this location is not well defined, and therefore, we have assumed that, as long as
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Table 5.1: Mass and Inertia estimates for the Trunk, as determined by Pearsall et al. [86]

Mass Trunk Mass Body mass Ixx Iyy Izz
Level (g) (%) (%) (kg · cm2)

Upper Trunk 13149 44.6 18.5 1250.0 1650.0 1500.0
L1 1677 5.7 2.4 64.0 111.3 175.3
L2 1689 5.7 2.4 59.1 109.1 168.2
L3 1670 5.7 2.3 54.1 106.6 160.8
L4 1799 6.2 2.6 52.0 112.3 164.3
L5 1824 6.3 2.6 54.6 121.9 176.5
Pelvis and Sacrum 7486 25.6 10.7 300.0 750.0 800.0

the joint location lies within one std. of the mean, the ensuing kinematics are valid.

After the body geometry was arranged correctly muscle architecture was implemented

according to anatomical studies as given in detail in Chapter 4. Combining all of the pub-

lished anatomical muscle studies with the correct posture and joint kinematics was a much

greater feat than expected due to the large number of muscle fascicles involved and the need

to incorporate wrapping surfaces to ensure physiological lines of action for the muscle forces.

The manipulation of the model with the GUI can become tedious.

In Fig. 5.3, we have plotted the moment produced by the two largest flexor muscle

groups, the rectus abdominis and the erector spinae, for a single side. In order to obtain this

for the erector spinae, all the fascicles of the iliocostalis and the longissimus were summed.

What is interesting to note here is that the moment’s generated by these two primary

lumbar flexors seem to balance well through the entire range of joint angles. For compar-

ison, the contributions of the other, deeper muscles, such as the multifidus and quadratus

lumborum, are plotted in Fig. 5.4. These muscles are not known to be primary flexors
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(a) (b)

Figure 5.2: Locations of the instantaneous axis of rotation (IAR) for the 5 lumbar interver-

tebral joints a) as determined by Pearcy and Bogduk [84] b) as modeled

of the lumbar spine, and hence should have negligible moments at the L5/S1 joint during

flexion-extension. In comparison to the large moments produced by rectus abdominis and

erector spinae, it can be noticed that the deeper muscles only contribute up to 10 Nm during

the flexion-extension movement. This agrees well with the literature in that these muscles

serve little purpose in flexing the lumbar spine.

The purpose of this model is primarily as an analytic tool for researchers to analyze

spinal kinematics in the hopes of further improving our understanding of the pathology

and potential remedies of chronic lower back pain. Furthermore, it has been shown that
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Figure 5.3: Moment generated at L5/S1 joint by the two primary flexor muscle groups,

erector spinae (ES) and rectus abdominis (RA). The erector spinae plotted here consists of

a sum of the longissimus and the iliocostalis groups.

specific muscular activation patterns are necessary to maintain spinal stability [16, 21, 28].

This model is an ideal starting point for studying the hypothesis that lower back pain is a

consequence of joint degeneration in combination with altered muscle activation patterns.

In particular, this model is well suited to study the phenoma of antagonistic muscle co-

activation during lifting, and the concomitant affects on spinal stability.

Despite the complexity of the model, there are still a number of improvements that need

to be incorporated to ensure that the model truly replicates human lumbar kinematics.

56



MF

QL

Psoas

-9

-5

0

5

10
M

o
m

e
n
t 
(N

m
)

Flexion ExtensionJoint Angle (degrees)

-70 -60 -50 -40 -30 -20 -10 0 10 20 30

Figure 5.4: Moment generated at L5/S1 joint by the deeper, stabilizer muscles, the Quadratus

lumborum (QL), Multifidus (MF), and Psoas.

One of the main deficiencies in the model currently is the lack of intra-abdominal pressure

(IAP). As it has been shown that IAP is a mechanism for stabilizing the lumbar spine [19], a

stability analysis of our model sans the incorporation of the IAP may produce skewed results.

Additionally, the effects of the passive structures in the lumbar spine - the intervertebral

disc,ligaments, and facet joints - have not been included thus far. These passive structures are

also hypothesized to play a synergistic role with the muscles in maintaining spinal stability

[37].

Nevertheless, the open-source nature of this model naturally lends itself to improvement
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by the biomedical research community. It is our hope that, by making our model publicly

available, the limitations mentioned above can be addressed in a relatively straightforward

and effortless manner via the collaborative efforts of the OpenSim research community.
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strength, cross-sectional area, and density of mm erector spinae in men with and

without low back pain. Journal of Spinal Disorders, 6(2):114–123, 1993.

[46] M. Ikai and T. Fukunaga. Calculation of muscle strength per unit cross-sectional area

of human muscle by means of ultrasonic measurement. European Journal of Applied

Physiology and Occupational Physiology, 26(1):26–32, 1968.

[47] T. Ishii, Y. Mukai, N. Hosono, H. Sakaura, Y. Nakajima, Y. Sato, K. Sugamoto,

and H. Yoshikawa. Kinematics of the upper cervical spine in rotation: In vivo three-

dimensional analysis. Spine, 29(7):E139–E144, 2004.

64



[48] J. Janevic, J. A. Ashton-Miller, and A. B. Schultz. Large compressive preloads decrease

lumbar motion segment flexibility. Journal of Orthopaedic Research, 9(2):228–36, Mar

1991.

[49] T. Keller and A. Roy. Posture-dependent isometric trunk extension and flexion strength

in normal male and female subjects. Journal of Spinal Disorders, 15(4):312, 2002.

[50] A. Kittur and R. Kraut. Harnessing the wisdom of crowds in Wikipedia: quality

through coordination. Proceedings of the ACM 2008 Conference on Computer Sup-

ported Cooperative Work, pages 37–46, 2008.

[51] M. Kozanek, S. Wang, P. G. Passias, Q. Xia, G. Li, C. M. Bono, K. Wood, and

G. Li. Range of motion and orientation of the lumbar facet joints in vivo. Spine,

34(19):E689–E696, 2009.

[52] J. M. Lambrecht, M. L. Audu, R. J. Triolo, and R. F. Kirsch. Musculoskeletal model of

trunk and hips for development of seated-posture-control neuroprosthesis. The Journal

of Rehabilitation Research and Development, 46(4):515–528, Jan 2009.

[53] W.-E. Lee, H.-W. Uhm, and Y.-S. Nam. Estimation of tendon slack length of knee

extension/flexion muscle. International Conference on Control, Automation and Sys-

tems, pages 1–4, 2008.

[54] G. Li, S. Wang, P. Passias, Q. Xia, G. Li, and K. Wood. Segmental in vivo vertebral

motion during functional human lumbar spine activities. European Spine Journal,

18(7):1013–1021, 2009.

65



[55] G. Lichtwark and A. Wilson. Optimal muscle fascicle length and tendon stiffness for

maximising gastrocnemius efficiency during human walking and running. Journal of

Theoretical Biology, 252(4):662–673, 2008.

[56] M. E. Lonnemann, S. V. Paris, and G. C. Gorniak. A morphological comparison of the

human lumbar multifidus by chemical dissection. Journal of Manual and Manipulative

Therapy, 16(4):E84–E92, 2008.

[57] R. M. Lumsden and J. M. Morris. An in vivo study of axial rotation and immobilization

at the lumbosacral joint. The Journal of Bone and Joint Surgery, 50(8):1591, 1968.

[58] X. Luo and R. Pietrobon. Estimates and patterns of direct health care expenditures

among individuals with back pain in the united states. Spine, 29(1):79, 2004.

[59] J. E. Macintosh and N. Bogduk. The biomechanics of the lumbar multifidus. Clinical

Biomechanics, 1:205–213, 1986.

[60] J. E. Macintosh and N. Bogduk. The morphology of the human lumbar multifidus.

Spine, 12(7):196–204, 1986.

[61] J. E. Macintosh and N. Bogduk. 1987 Volvo award in basic science. the morphology

of the lumbar erector spinae. Spine, 12(7):658, 1987.

[62] J. E. Macintosh and N. Bogduk. The attachments of the lumbar erector spinae. Spine,

16(7):783–792, 1991.

[63] K. Manal and T. Buchanan. Subject-specific estimates of tendon slack length: A

numerical method. Journal of Applied Biomechanics, 20:195–203, 2004.

66



[64] W. Marras, M. Jorgensen, K. P. Granata, and B. Wiand. Female and male trunk

geometry: Size and prediction of the spine loading trunk muscles derived from MRI.

Clinical Biomechanics, 16(1):38–46, 2001.

[65] B. Martin, R. Deyo, S. Mirza, J. Turner, B. Comstock, W. Hollingworth, and S. Sul-

livan. Expenditures and health status among adults with back and neck problems.

JAMA, 299(6):656–664, 2008.

[66] S. McGill. A revised anatomical model of the abdominal musculature for torso flexion

efforts. Journal of Biomechanics, 29(7):973–977, 1996.

[67] S. McGill, A. Childs, and C. Liebenson. Endurance times for low back stabilization

exercises: Clinical targets for testing and training from a normal database. Archives

of Physical Medicine and Rehabilitation, 80(8):941–944, 1999.

[68] S. McGill, R. Hughson, and K. Parks. Changes in lumbar lordosis modify the role of

the extensor muscles. Clinical Biomechanics, 15(10):777–780, 2000.

[69] S. McGill, D. Juker, and P. Kropf. Appropriately placed surface EMG electrodes reflect

deep muscle activity (psoas, quadratus lumborum, abdominal wall) in the lumbar spine.

Journal of Biomechanics, 29(11):1503–1507, 1996.

[70] S. McGill, D. Juker, and P. Kropf. Quantitative intramuscular myoelectric activity of

quadratus lumborum during a wide variety of tasks. Clinical Biomechanics, 11(3):170–

172, 1996.

[71] S. McGill and R. Norman. Effects of an anatomically detailed erector spinae model on

L4/L5 disc compression and shear. Journal of Biomechanics, 20(6):591–600, 1987.

67



[72] S. McGill and R. Norman. Potential of lumbodorsal fascia forces to generate back

extension moments during squat lifts. Journal of Biomedical Engineering, 10(4):312–

318, 1988.

[73] J. Meakin, J. Gregory, F. Smith, F. Gilbert, and R. Aspden. Characterizing the shape

of the lumbar spine using an active shape model: Reliability and precision of the

method. Spine, 33(7):807–813, 2008.

[74] J. R. Meakin, J. S. Gregory, R. M. Aspden, F. W. Smith, and F. J. Gilbert. The

intrinsic shape of the human lumbar spine in the supine, standing and sitting postures:

characterization using an active shape model. Journal of Anatomy, 215:206–211, 2009.

[75] W. Murray, T. Buchanan, and S. L. Delp. The isometric functional capacity of muscles

that cross the elbow. Journal of Biomechanics, 33(8):943–952, 2000.

[76] A. Nachemson. Electromyographic studies on the vertebral portion of the psoas muscle:

With special reference to its stabilizing function of the lumbar spine. Acta Orthopaed-

ica, 37(2):177–190, 1966.

[77] A. Nachemson. The possible importance of the psoas muscle for stabilization of the

lumbar spine. Acta Orthopaedica, 39(1-3):47–57, 1968.

[78] M. Nissan and I. Gilad. Dimensions of human lumbar vertebrae in the sagittal plane.

Journal of Biomechanics, 19(9):753–8, 1986.

[79] R. S. Ochia, N. Inoue, S. M. Renner, E. P. Lorenz, T.-H. Lim, G. B. J. Andersson, and

H. S. An. Three-dimensional in vivo measurement of lumbar spine segmental motion.

Spine, 31(18):2073–8, 2006.

68



[80] O. M. O’Reilly, M. F. Metzger, J. M. Buckley, D. A. Moody, and J. C. Lotz. On

the stiffness matrix of the intervertebral joint: Application to total disk replacement.

Journal of Biomechanical Engineering, 131(8):081007, 2009.

[81] M. M. Panjabi. Centers and angles of rotation of body joints: a study of errors and

optimization. Journal of Biomechanics, 12(12):911–920, 1979.

[82] M. M. Panjabi, R. A. Brand, and I. Augustus A White. Three-dimensional flexibil-

ity and stiffness properties of the human thoracic spine. Journal of Biomechanics,

9(4):185–192, 1976.

[83] M. M. Panjabi, V. K. Goel, T. Oxland, K. Takata, J. Duranceau, M. Krag, and

M. Price. Human lumbar vertebrae: Quantitative three-dimensional anatomy. Spine,

17(3):299–306, 1992.

[84] M. J. Pearcy and N. Bogduk. Instantaneous axes of rotation of the lumbar interverte-

bral joints. Spine, 13(9):1033–41, 1988.

[85] M. J. Pearcy and S. Tibrewal. Axial rotation and lateral bending in the normal lumbar

spine measured by three-dimensional radiography. Spine, 9(6):582–587, 1984.

[86] D. J. Pearsall, J. Reid, and L. Livingston. Segmental inertial parameters of the human

trunk as determined from computed tomography. Annals of Biomedical Engineering,

24(2):198–210, 1996.

[87] D. J. Pearsall, J. Reid, and R. Ross. Inertial properties of the human trunk of males

determined from magnetic resonance imaging. Annals of Biomedical Engineering,

22(6):692–706, 1994.

69



[88] S. Phillips, S. Mercer, and N. Bogduk. Anatomy and biomechanics of quadratus lum-

borum. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of

Engineering in Medicine, 222(2):151–159, 2008.

[89] A. Rosatelli, K. Ravichandiran, and A. Agur. Three-dimensional study of the muscu-

lotendinous architecture of lumbar multifidus and its functional implications. Clinical

Anatomy, 21(6):539–546, 2008.

[90] P. Roussouly, S. Gollogly, E. Berthonnaud, and J. Dimnet. Classification of the normal

variation in the sagittal alignment of the human lumbar spine and pelvis in the standing

position. Spine, 30(3):346–353, 2005.

[91] A. Rozumalski, M. H. Schwartz, R. Wervey, A. Swanson, D. C. Dykes, and T. No-

vacheck. The in vivo three-dimensional motion of the human lumbar spine during gait.

Gait & Posture, 28(3):378–84, 2008.

[92] P. Santaguida and S. McGill. The psoas major muscle: a three-dimensional geometric

study. Journal of Biomechanics, 28(3):339–345, 1995.

[93] A. B. Schultz and G. B. J. Andersson. Analysis of loads on the lumbar spine. Spine,

6(1):76–82, 1981.

[94] C. Schwieters and G. Clore. Internal coordinates for molecular dynamics and mini-

mization in structure determination and refinement. Journal of Magnetic Resonance,

152(2):288–302, 2001.

[95] A. Shirazi-Adl. Finite-element evaluation of contact loads on facets of an L2-L3 lumbar

segment in complex loads. Spine, 16(5):533–541, 1991.

70



[96] I. A. F. Stokes and M. G. Gardner-Morse. Lumbar spine maximum efforts and muscle

recruitment patterns predicted by a model with multijoint muscles and joints with

stiffness. Journal of Biomechanics, 28(2):173–186, 1995.

[97] I. A. F. Stokes and M. G. Gardner-Morse. Quantitative anatomy of the lumbar mus-

culature. Journal of Biomechanics, 32(3):311–316, 1999.

[98] I. A. F. Stokes, M. G. Gardner-Morse, D. Churchill, and J. P. Laible. Measurement

of a spinal motion segment stiffness matrix. Journal of Biomechanics, 35(4):517–521,

2002.

[99] D. G. Thelen. Adjustment of muscle mechanics model parameters to simulate dynamic

contractions in older adults. Journal of Biomechanical Engineering, 125:70–77, 2003.

[100] D. G. Thelen and F. C. Anderson. Using computed muscle control to generate forward

dynamic simulations of human walking from experimental data. Journal of Biome-

chanics, 39(6):1107–1115, 2006.

[101] D. G. Thelen, F. C. Anderson, and S. L. Delp. Generating dynamic simulations of

movement using computed muscle control. Journal of Biomechanics, 36(3):321–328,

2003.

[102] M. Troke, A. P. Moore, F. J. Maillardet, A. Hough, and E. Cheek. A new, compre-

hensive normative database of lumbar spine ranges of motion. Clinical rehabilitation,

15(4):371–379, 2001.

[103] J. van Dieėn and I. Kingma. Total trunk muscle force and spinal compression are

71



lower in asymmetric moments as compared to pure extension moments. Journal of

Biomechanics, 32(7):681–687, 1999.

[104] A. N. Vasavada, S. Li, and S. L. Delp. Influence of muscle morphometry and moment

arms on the moment-generating capacity of human neck muscles. Spine, 23(4):412–422,

1998.

[105] S. M. Walker and G. Schrodt. I segment lengths and thin filament periods in skeletal

muscle fibers of the rhesus monkey and the human. Anat Rec, 178(1):63–81, Jan 1974.

[106] S. Wang, P. Passias, G. Li, G. Li, and K. Wood. Measurement of vertebral kine-

matics using noninvasive image matching method-validation and application. Spine,

33(11):E355–E361, May 2008.

[107] S. R. Ward, C. M. Eng, L. H. Smallwood, and R. L. Lieber. Are current measurements

of lower extremity muscle architecture accurate? Clinical Orthopaedics and Related

Research, 467(4):1074–1082, 2009.

[108] S. R. Ward, C. W. Kim, C. M. Eng, L. J. Gottschalk, A. Tomiya, S. R. Garfin, and

R. L. Lieber. Architectural analysis and intraoperative measurements demonstrate the

unique design of the multifidus muscle for lumbar spine stability. The Journal of Bone

and Joint Surgery, 91(1):176–185, 2009.

[109] S. R. Ward, A. Tomiya, G. J. Regev, B. E. Thacker, R. C. Benzl, C. W. Kim, and

R. L. Lieber. Passive mechanical properties of the lumbar multifidus muscle support

its role as a stabilizer. Journal of Biomechanics, 42(10):1384–1389, 2009.

72



[110] T. Weis-Fogh and M. N. Alexander. Scale effects in animal locomotion. The Sustained

Power Output From Striated Muscle., pages 511–525, 1977.

[111] A. A. White and M. M. Panjabi. Clinical Biomechanics of the Spine. Lippincott,

Philadelphia :, 1978.

[112] A. Wilkenfeld, M. Audu, and R. J. Triolo. Feasibility of functional electrical stimulation

for control of seated posture after spinal cord injury: A simulation study. Journal of

Rehabilitation Research and Development, 43(2):139–152, 2006.

[113] H. J. Woltring, R. Huiskes, A. de Lange, and F. E. Veldpaus. Finite centroid and

helical axis estimation from noisy landmark measurements in the study of human joint

kinematics. Journal of Biomechanics, 18(5):379–389, 1985.

[114] K. Wong, K. Luk, J. Leong, S. Wong, and K. Wong. Continuous dynamic spinal motion

analysis. Spine, 31(4):414–419, 2006.

[115] I. Yamamoto, M. M. Panjabi, T. Crisco, and T. Oxland. Three-dimensional movements

of the whole lumbar spine and lumbosacral joint. Spine, 14(11):1256–1260, 1989.

[116] F. E. Zajac. Muscle and tendon: Properties, models, scaling, and application to biome-

chanics and motor control. Critical Reviews in Biomedical Engineering, 17(4):359–411,

1989.

73



Appendix A

74



Muscle Architecture Data

Table A.1: Quick guide to muscle parameters and terms

Length Terms Force Terms Constants and Subscripts

ℓMT Musculotendon
Length

FM Muscle
force

k stiffness or shape
factor

ℓM Muscle Length FM
O Maximum

isometric
force

[ ]toe transition region

ℓMO Optimal fiber
length

fl Normalized
muscle
force

[ ]lin at linear region

L̄M Normalized
muscle length

F T Tendon
Force

PE passive element

ℓT Tendon length F̄ T Normalized
tendon
force

CE contractile
element

ℓTS Tendon slack
length

γ Gaussian shape
factor

ℓS Sarcomere
length

K Specific Tension
(N/cm2)

εT Tendon strain [ ]0 at maximum
force

εM Passive muscle
strain

α pennation angle
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Table A.2: Muscle modeling parameters: PCSA mm2, maximum isometric force FM
o (N),

a ratio of the muscle fiber length to the musculotendon length ℓf/ℓMT , sarcomere length

ℓS(µm), optimal fiber length ℓMo (m), pennation angle α (degrees), and tendon slack length

ℓTS (m). The source of this data is given at the top of each muscle column. Note: via implies

this data was not explicitly given, but it was determined graphically or by description.

Muscle Group Name PCSA FM
o ℓf/ℓMT ℓS ℓMo α ℓTS

Psoas Major [15] est. [38] [107] [8]
Ps L1 VB 211 97 0.800 3.11 0.1841 10.7 0.0647
Ps L1 TP 61 28 0.800 3.11 0.1818 10.7 0.0639
Ps L2 TP 211 97 0.800 3.11 0.1597 10.7 0.0561
Ps L3 TP 101 46 0.800 3.11 0.1394 10.7 0.0490
Ps L4 TP 161 74 0.800 3.11 0.1195 10.7 0.0420
Ps L5 TP 173 80 0.800 3.11 0.1034 10.7 0.0363
Ps L5 VB 191 88 0.800 3.11 0.0903 10.7 0.0317
Ps L1 L2 IVD 120 55 0.800 3.11 0.1660 10.7 0.0583
Ps L2 L3 IVD 119 55 0.800 3.11 0.1440 10.7 0.0506
Ps L3 L4 IVD 36 17 0.800 3.11 0.1235 10.7 0.0434
Ps L4 L5 IVD 79 36 0.800 3.11 0.0998 10.7 0.0351

Rectus Abdominis [97] [25] [25] [25]
rect abd 567 261 0.788 2.83 0.2986 0 0.0810

Erector Spinae [14] [25] [25] [25]
Iliocostalis Lumborum IL L4 189 87 0.274 2.37 0.0167 13.8 0.0354
pars Lumborum IL L3 182 84 0.274 2.37 0.0252 13.8 0.0533

IL L2 154 71 0.274 2.37 0.0373 13.8 0.0789
IL L1 108 50 0.274 2.37 0.0514 13.8 0.1089

Iliocostalis Lumborum IL r5 23 11 0.381 2.37 0.1546 13.8 0.2165
pars Thoracis IL r6 31 14 0.417 2.37 0.1483 13.8 0.1793

IL r7 39 18 0.452 2.37 0.1459 13.8 0.1536
IL r8 34 16 0.462 2.37 0.1293 13.8 0.1308
IL r9 50 23 0.600 2.37 0.1424 13.8 0.0838
IL r10 100 46 0.600 2.37 0.1175 13.8 0.0692
IL r11 123 57 0.640 2.37 0.1011 13.8 0.0506
IL r12 147 68 0.640 2.37 0.0731 13.8 0.0366

Longissimus Thoracis LTpT t1 29 13 0.260 2.31 0.1028 12.6 0.2430
pars Thoracis LTpT t2 57 26 0.257 2.31 0.1061 12.6 0.2550

LTpT t3 56 26 0.257 2.31 0.1067 12.6 0.2565
LTpT t4 23 10 0.257 2.31 0.1068 12.6 0.2566
LTpT t5 22 10 0.257 2.31 0.1008 12.6 0.2421
LTpT t6 32 15 0.267 2.31 0.1031 12.6 0.2360
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LTpT t7 39 18 0.306 2.31 0.1183 12.6 0.2236
LTpT t8 63 29 0.346 2.31 0.1261 12.6 0.1997
LTpT t9 73 34 0.330 2.31 0.1244 12.6 0.2108
LTpT t10 80 37 0.330 2.31 0.1123 12.6 0.1903
LTpT t11 84 38 0.330 2.31 0.0962 12.6 0.1631
LTpT t12 69 32 0.330 2.31 0.0753 12.6 0.1275
LTpT r4 23 10 0.330 2.31 0.1358 12.6 0.2302
LTpT r5 22 10 0.330 2.31 0.1273 12.6 0.2157
LTpT r6 32 15 0.353 2.31 0.1348 12.6 0.2065
LTpT r7 39 18 0.333 2.31 0.1284 12.6 0.2144
LTpT r8 63 29 0.290 2.31 0.1051 12.6 0.2145
LTpT r9 73 34 0.254 2.31 0.0909 12.6 0.2222
LTpT r10 80 37 0.327 2.31 0.1059 12.6 0.1817
LTpT r11 84 38 0.370 2.31 0.1013 12.6 0.1445
LTpT r12 69 32 0.300 2.31 0.0633 12.6 0.1230

Longissimus Thoracis LTpL L1 79 36 0.419 2.31 0.0811 12.6 0.0944
pars Lumborum LTpL L2 91 42 0.433 2.31 0.0677 12.6 0.0744

LTpL L3 103 47 0.436 2.31 0.0549 12.6 0.0596
LTpL L4 110 51 0.438 2.31 0.0392 12.6 0.0424
LTpL L5 116 53 1.000 2.31 0.0504 12.6 0.0019

Quadratus Lumborum [88] [25] [25] [25]
QL post I.1-L3 40 18 0.505 2.38 0.0384 7.4 0.0322
QL post I.2-L4 53 24 0.505 2.38 0.0222 7.4 0.0186
QL post I.2-L3 31 14 0.505 2.38 0.0502 7.4 0.0421
QL post I.2-L2 19 9 0.505 2.38 0.0348 7.4 0.0292
QL post I.3-L1 28 13 0.624 2.38 0.0856 7.4 0.0445
QL post I.3-L2 30 14 0.505 2.38 0.0504 7.4 0.0423
QL post I.3-L3 50 23 0.505 2.38 0.0361 7.4 0.0303
QL mid L3-12.3 13 6 0.624 2.38 0.0546 7.4 0.0284
QL mid L3-12.2 14 7 0.624 2.38 0.0579 7.4 0.0301
QL mid L3-12.1 24 11 0.624 2.38 0.0631 7.4 0.0328
QL mid L2-12.1 20 9 0.624 2.38 0.0408 7.4 0.0212
QL mid L4-12.3 12 5 0.624 2.38 0.0729 7.4 0.0379
QL ant I.2-T12 15 7 0.624 2.38 0.1045 7.4 0.0543
QL ant I.3-T12 29 7 0.624 2.38 0.1033 7.4 0.0537
QL ant I.2-12.1 10 5 0.624 2.38 0.0999 7.4 0.0519
QL ant I.3-12.1 19 9 0.624 2.38 0.0987 7.4 0.0512
QL ant I.3-12.2 13 6 0.624 2.38 0.0929 7.4 0.0482
QL ant I.3-12.3 15 7 0.624 2.38 0.0869 7.4 0.0451

Multifidus [14] [89] [108] [4]
MF m1s 40 18 0.661 2.27 0.0468 0 0.0195
MF m1t.1 42 19 0.730 2.27 0.0752 0 0.0225
MF m1t.2 36 17 0.730 2.27 0.0943 0 0.0283
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MF m1t.3 60 28 0.730 2.27 0.1030 0 0.0309
MF m2s 39 18 0.677 2.27 0.0454 0 0.0176
MF m2t.1 39 18 0.727 2.27 0.0639 0 0.0194
MF m2t.2 99 46 0.727 2.27 0.0809 0 0.0246
MF m2t.3 99 46 0.727 2.27 0.0917 0 0.0279
MF m3s 54 25 0.661 2.27 0.0397 0 0.0165
MF m3t.1 52 24 0.709 2.27 0.1028 0 0.0342
MF m3t.2 52 24 0.709 2.27 0.0854 0 0.0284
MF m3t.3 52 24 0.709 2.27 0.0854 0 0.0284
MF m4s 47 21 0.562 2.27 0.0372 0 0.0235
MF m4t.1 47 21 0.667 2.27 0.0548 0 0.0222
MF m4t.2 47 21 0.667 2.27 0.0734 0 0.0297
MF m4t.3 47 21 0.667 2.27 0.0848 0 0.0344
MF m5s 23 10 0.562 2.27 0.0147 0 0.0093
MF m5t.1 23 10 0.667 2.27 0.0759 0 0.0308
MF m5t.2 23 10 0.667 2.27 0.0568 0 0.0230
MF m5t.3 23 10 0.667 2.27 0.0175 0 0.0071
MF m1.laminar 19 9 0.681 2.27 0.0313 0 0.0119
MF m2.laminar 22 10 0.681 2.27 0.0269 0 0.0102
MF m3.laminar 23 11 0.681 2.27 0.0262 0 0.0099
MF m4.laminar 17 8 0.681 2.27 0.0286 0 0.0109
MF m5.laminar 36 17 0.681 2.27 0.0256 0 0.0097

External Oblique [97] est. [38] [25] [25]
EO1 196 90 0.389 2.83 0.0359 0 0.0570
EO2 232 107 0.410 2.83 0.0379 0 0.0552
EO3 243 112 0.455 2.83 0.0384 0 0.0466
EO4 234 108 0.470 2.83 0.0393 0 0.0448
EO5 273 126 0.480 2.83 0.0471 0 0.0515
EO6 397 183 0.500 2.83 0.0565 0 0.0571

Internal Oblique [97] est. [38] [25] [25]
IO1 185 85 0.400 2.83 0.0422 0 0.0640
IO2 224 103 0.400 2.83 0.0435 0 0.0659
IO3 226 104 0.400 2.83 0.0517 0 0.0783
IO4 268 123 0.600 2.83 0.0697 0 0.0470
IO5 235 108 0.600 2.83 0.0568 0 0.0383
IO6 207 95 0.600 2.83 0.0544 0 0.0367

Latissimus Dorsi [13] est. [13]
LD L1 90 41 0.790 2.3 0.3161 0 0.0692
LD L2 90 41 0.790 2.3 0.3383 0 0.0741
LD L3 110 51 0.790 2.3 0.3551 0 0.0778
LD L4 110 51 0.790 2.3 0.3719 0 0.0815
LD L5 110 51 0.800 2.3 0.3902 0 0.0801
LD T7 40 18 0.800 2.3 0.2238 0 0.0460

Continued on next page

78



Table A.2 – continued from previous page

Muscle Group Name PCSA FM
o ℓf/ℓMT ℓS ℓMo α ℓTS

LD T8 40 18 0.800 2.3 0.2325 0 0.0477
LD T9 40 18 0.840 2.3 0.2570 0 0.0402
LD T10 60 28 0.840 2.3 0.2797 0 0.0438
LD T11 60 28 0.800 2.3 0.2848 0 0.0585
LD T12 50 23 0.800 2.3 0.3032 0 0.0623
LD R11 60 28 0.800 2.3 0.2407 0 0.0494
LD R12 40 18 0.800 2.3 0.2445 0 0.0502
LD Il 70 32 0.950 2.3 0.4321 0 0.0187
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