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Aims of Research

The aims of the research are to characterize changes in the dynamics of the
spine due to back pain therapies and total disc replacements, as well as to
quantify the effects of passive and active stiffnesses. The research program
features the analysis of a variety of models, experiments, and clinical data.
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Among the components of the spine are a series of functional spinal units
(FSU), each of which has 6 degrees of freedom: three translational d and
three rotational. Rotation tensors R are traditionally parameterized by a
3-2-1 set of Euler angles (axial rotation, lateral bending & flexion/extension)
[1]. Other components of the spine include muscles, tendons, and facet joints.
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For each FSU, conservative components of the force F and momentM can be
represented by the gradient of a (scalar) potential function U (d = dkEk,R)
[2]:
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Performing a Taylor expansion of Fcon and Mcon produces a variety of rep-
resentations for Cartesian and non-Cartesian stiffness matrices [3, 4]. These
concepts were applied to the spine and used to analyze total disc replacements
in [4].

Multibody Models of the Spine

Using the OpenSim software program, a comprehensive multibody model of
the lumbar spine was developed featuring 238 muscle fascicles. The model,
which is discussed in [5], incorporates Thelen-type models for the muscle
forces, and is based on an extensive literature survey comprising over 50
references with data on muscle forces and anatomy.

Currently, we are working on incorporating stiffness matrices for the inter-
vertebral joints and developing a simpler model to use with a spine testing
facility. Although recent data has been used to develop the musculoskeletal
model, significant validation remains to be performed.

Buckling and Stability

We are developing models based on rod theory to examine spine stabilization
in the presence of non-conservative muscle forces [6, 7]. Based on the second
variation of the total energy of the rod-based model, a method for determining
the stability of rod configurations has been developed. This method involves
obtaining the solution of a Riccati differential equation. If a bounded solution
exists, the energy functional is minimized and the rod configuration is stable
(see results in the figure below). However, if a bounded solution cannot be
obtained, then the method strongly suggests instability of the configuration
being analyzed.
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Total Disc Replacements

With the aim of characterizing the changes in stiffness due to a total disc re-
placement, measurements of the norm of a stiffness matrix K were determined
in [4] . A sample of some of our results are shown in the figure below.
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Spine Testing

In order to impose physiologic boundary conditions and muscle forces which
more accurately simulate in vivo conditions, to quantify the role of the various
muscle groups in the lower spine, and to calibrate our models, a novel spine
testing facility has also been developed.
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